Exploring Different Representational Units in English-to-Turkish Statistical Machine Translation
نویسندگان
چکیده
We investigate different representational granularities for sub-lexical representation in statistical machine translation work from English to Turkish. We find that (i) representing both Turkish and English at the morpheme-level but with some selective morpheme-grouping on the Turkish side of the training data, (ii) augmenting the training data with “sentences” comprising only the content words of the original training data to bias root word alignment, (iii) reranking the n-best morpheme-sequence outputs of the decoder with a word-based language model, and (iv) using model iteration all provide a non-trivial improvement over a fully word-based baseline. Despite our very limited training data, we improve from 20.22 BLEU points for our simplest model to 25.08 BLEU points for an improvement of 4.86 points or 24% relative.
منابع مشابه
Limsi @ Iwslt 2010
This paper describes LIMSI’s Statistical Machine Translation systems (SMT) for the IWSLT evaluation, where we participated in two tasks (Talk for English to French and BTEC for Turkish to English). For the Talk task, we studied an extension of our in-house n-code SMT system (the integration of a bilingual reordering model over generalized translation units), as well as the use of training data ...
متن کاملStatistical Machine Translation into a Morphologically Complex Language
In this paper, we present the results of our investigation into phrase-based statistical machine translation from English into Turkish – an agglutinative language with very productive inflectional and derivational word-formation processes. We investigate different representational granularities for morphological structure and find that (i) representing both Turkish and English at the morpheme-l...
متن کاملAligning Turkish and English Parallel Texts for Statistical Machine Translation
This paper presents a preliminary work on aligning Turkish and English parallel texts towards developing a statistical machine translation system for English and Turkish. To avoid the data sparseness problem and to uncover relations between sublexical components of words such as morphemes, we have converted our parallel texts to a morphemic representation and then used standard word alignment a...
متن کاملThe tÜBITAK-UEKAE statistical machine translation system for IWSLT 2009
We describe our Arabic-to-English and Turkish-to-English machine translation systems that participated in the IWSLT 2009 evaluation campaign. Both systems are based on the Moses statistical machine translation toolkit, with added components to address the rich morphology of the source languages. Three different morphological approaches are investigated for Turkish. Our primary submission uses l...
متن کاملThe Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language
Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...
متن کامل